5. Parameterized Queries

In this chapter we learn how to construct parameterized queries, and introduce the Composite typeclass.

Setting Up

Same as last chapter, so if you’re still set up you can skip this section. Otherwise let’s set up a Transactor and YOLO mode.

import doobie.imports._, scalaz._, Scalaz._, scalaz.concurrent.Task

val xa = DriverManagerTransactor[Task](
  "org.postgresql.Driver", "jdbc:postgresql:world", "postgres", ""
)

import xa.yolo._

We’re still playing with the country table, shown here for reference.

CREATE TABLE country (
  code       character(3)  NOT NULL,
  name       text          NOT NULL,
  population integer       NOT NULL,
  gnp        numeric(10,2)
  -- more columns, but we won't use them here
)

Adding a Parameter

Let’s set up our Country class and re-run last chapter’s query just to review.

case class Country(code: String, name: String, pop: Int, gnp: Option[Double])
scala> (sql"select code, name, population, gnp from country"
     |   .query[Country].process.take(5).quick.run)
  Country(AFG,Afghanistan,22720000,Some(5976.0))
  Country(NLD,Netherlands,15864000,Some(371362.0))
  Country(ANT,Netherlands Antilles,217000,Some(1941.0))
  Country(ALB,Albania,3401200,Some(3205.0))
  Country(DZA,Algeria,31471000,Some(49982.0))

Still works. Ok.

So let’s factor our query into a method and add a parameter that selects only the countries with a population larger than some value the user will provide. We insert the minPop argument into our SQL statement as $minPop, just as if we were doing string interpolation.

def biggerThan(minPop: Int) = sql"""
  select code, name, population, gnp 
  from country
  where population > $minPop
""".query[Country]

And when we run the query … surprise, it works!

scala> biggerThan(150000000).quick.run // Let's see them all
  Country(BRA,Brazil,170115000,Some(776739.0))
  Country(IDN,Indonesia,212107000,Some(84982.0))
  Country(IND,India,1013662000,Some(447114.0))
  Country(CHN,China,1277558000,Some(982268.0))
  Country(PAK,Pakistan,156483000,Some(61289.0))
  Country(USA,United States,278357000,Some(8510700.0))

So what’s going on? It looks like we’re just dropping a string literal into our SQL string, but actually we’re constructing a proper parameterized PreparedStatement, and the minProp value is ultimately set via a call to setInt (see “Diving Deeper” below).

doobie allows you to interpolate any JVM type that has a target mapping defined by the JDBC spec, plus vendor-specific types and custom column types that you define. We will discuss custom type mappings in a later chapter.

Multiple Parameters

Multiple parameters work the same way. No surprises here.

scala> def populationIn(range: Range) = sql"""
     |   select code, name, population, gnp 
     |   from country
     |   where population > ${range.min}
     |   and   population < ${range.max}
     | """.query[Country]
populationIn: (range: Range)doobie.util.query.Query0[Country]

scala> populationIn(150000000 to 200000000).quick.run 
  Country(BRA,Brazil,170115000,Some(776739.0))
  Country(PAK,Pakistan,156483000,Some(61289.0))

Diving Deeper

In the previous chapter’s Diving Deeper we saw how a query constructed with the sql interpolator is just sugar for the process constructor defined in the doobie.hi.connection module (aliased as HC). Here we see that the second parameter, a PreparedStatementIO program, is used to set the query parameters.

import scalaz.stream.Process

val q = """
  select code, name, population, gnp 
  from country
  where population > ?
  and   population < ?
  """

def proc(range: Range): Process[ConnectionIO, Country] = 
  HC.process[Country](q, HPS.set((range.min, range.max)))

Which produces the same output.

scala> proc(150000000 to 200000000).quick.run
  Country(BRA,Brazil,170115000,Some(776739.0))
  Country(PAK,Pakistan,156483000,Some(61289.0))

But how does the set constructor work?

When reading a row or setting parameters in the high-level API, we require an instance of Composite[A] for the input or output type. It is not immediately obvious when using the sql interpolator, but the parameters (each of which require an Atom instance, to be discussed in a later chapter) are gathered into a tuple and treated as a single composite parameter.

Composite instances are derived automatically for column types that have Atom instances, and for products of other composites (via shapeless.ProductTypeclass). We can summon their instances thus:

scala> Composite[(String, Boolean)]
res4: doobie.util.composite.Composite[(String, Boolean)] = doobie.util.composite$LowerPriorityComposite$$anon$4$$anon$7@5ad261c

scala> Composite[Country]
res5: doobie.util.composite.Composite[Country] = doobie.util.composite$LowerPriorityComposite$$anon$4$$anon$7@243d51c7

The set constructor takes an argument of any type with a Composite instance and returns a program that sets the unrolled sequence of values starting at parameter index 1 by default. Some other variations are shown here.

// Set parameters as (String, Boolean) starting at index 1 (default)
HPS.set(("foo", true))

// Set parameters as (String, Boolean) starting at index 1 (explicit)
HPS.set(1, ("foo", true))

// Set parameters individually
HPS.set(1, "foo") *> HPS.set(2, true)

// Or out of order, who cares?
HPS.set(2, true) *> HPS.set(1, "foo")

Using the low level doobie.free constructors there is no typeclass-driven type mapping, so each parameter type requires a distinct method, exactly as in the underlying JDBC API. The purpose of the Atom typeclass (discussed in a later chapter) is to abstract away these differences.

FPS.setString(1, "foo") *> FPS.setBoolean(2, true)